Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, given n = 3, a solution set is:
"((()))", "(()())", "(())()", "()(())", "()()()"
1. 如果左括号数还没有用完,那么我们能继续放置左括号
2. 如果已经放置的左括号数大于已经放置的右括号数,那么我们可以放置右括号 (如果放置的右括号数大于放置的左括号数,会出现不合法组合)
所以,运用dfs在每一层递归中,如果满足条件先放置左括号,如果满足条件再放置右括号
返回条件: 左括号和右括号都用完的情况下返回
参数传入: 如果左侧增加一个括号 下次递归时候就是left- 1 右侧同理
public class Solution { public ArrayList<String> generateParenthesis(int n) { ArrayList<String> result = new ArrayList<String>(); if (n <= 0){ return result; } dfs(result, "", n, n); return result; } public void dfs(ArrayList<String> result, String tem, int left, int right){ if (left == 0 && right == 0){ result.add(tem); return; } if (left > 0){ tem = tem + "("; dfs(result, tem, left-1 , right); tem = new String(tem.substring(0, tem.length() - 1)); } if (left < right){ tem = tem + ")"; dfs(result, tem, left, right-1); tem = new String(tem.substring(0, tem.length() - 1)); } } }
更简便的方法: dfs时候直接带入新的tem 这样就不用改变tem的值了
public class Solution { public ArrayList<String> generateParenthesis(int n) { ArrayList<String> result = new ArrayList<String>(); if (n <= 0){ return result; } dfs(result, "", n, n); return result; } public void dfs(ArrayList<String> result, String tem, int left, int right){ if (left == 0 && right == 0){ result.add(tem); return; } if (left > 0){ dfs(result, tem + "(", left - 1 , right); } if (left < right){ dfs(result, tem = tem + ")", left, right - 1); } } }
没有评论:
发表评论