Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given
Given
[0,1,0,2,1,0,1,3,2,1,2,1], return 6.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
对于位置i可蓄水量取决于他的左右侧高度的较小值与height[i]的差值, 所以只要找到i的左侧的短板和右侧短板
从左到右遍历一遍找到左侧的短板 再从右到左便利一次找到右边的短板
一共遍历三次 时间O(n) 空间 O(n)
一共遍历三次 时间O(n) 空间 O(n)
public class Solution {
public int trap(int[] height) {
if (height == null || height.length == 0) {
return 0;
}
int len = height.length;
int[] left = new int[len];
int[] right = new int[len];
int leftmax = height[0];
int rightmax = height[len - 1];
for (int i = 1; i < len; i ++) {
left[i] = Math.max(leftmax, height[i]);
leftmax = Math.max(leftmax, height[i]);
}
for (int j = len - 2; j >= 0; j--) {
right[j] = Math.max(rightmax, height[j]);
rightmax = Math.max(rightmax, height[j]);
}
int res = 0;
for (int i = 0; i < len; i ++) {
int tem = Math.min(left[i], right[i]) - height[i];
if (tem > 0) {
res += tem;
}
}
return res;
}
}
没有评论:
发表评论