Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as
1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is
2
.时间O(m*n) 空间O(m*n)在第i个位置上设置一个障碍物后,说明位置i到最后一个格子这些路都没法走 为0所以说明,在初始条件时,如果一旦遇到障碍物,障碍物后面所有格子的走法都是0再看求解过程,当然按照上一题的分析dp[i][j] = dp[i-1][j] + dp[i][j-1] 的递推式依然成立.碰到了障碍物,那么这时的到这里的走法应该设为0,因为机器人只能向下走或者向右走,所以到这个点就无法通过。
public class Solution { public class Solution { public int uniquePathsWithObstacles(int[][] obstacleGrid) { if (obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0].length == 0) { return 0; } int m = obstacleGrid.length; int n = obstacleGrid[0].length; int [][] sum = new int [m][n]; for (int i = 0; i < m; i++) { if (obstacleGrid[i][0] != 1) { sum[i][0] = 1; } else { break;//后面所有的都无法到达所以break } } for (int j = 0; j < n; j++) { if (obstacleGrid[0][j] != 1) { sum[0][j] = 1; } else { break; } } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { if (obstacleGrid[i][j] != 1) { sum[i][j] = sum[i-1][j] + sum[i][j-1]; } else { sum[i][j] = 0; } } } return sum[m-1][n-1]; } }
没有评论:
发表评论