Given an array of n integers nums and a target, find the number of index triplets
i, j, k with 0 <= i < j < k < n that satisfy the condition nums[i] + nums[j] + nums[k] < target.
For example, given nums =
[-2, 0, 1, 3], and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1] [-2, 0, 3]
用3Sum的方法 a=num[i] + num[l] + num[r]
当a < target时候 left++, 但是注意此时对于num[i] + num[l] + num[l + 1 ---> r] 都满足<target
所以这个时候指针右移 count+ right - left;
public class Solution {
public int threeSumSmaller(int[] nums, int target) {
if (nums == null || nums.length == 0) {
return 0;
}
Arrays.sort(nums);
int count = 0;
for (int i = 0; i < nums.length - 2; i++) {
int left = i + 1;
int right = nums.length - 1;
while (left < right) {
if (nums[i] + nums[left] + nums[right] < target) {
count+= right - left;
left++;
}
if (nums[i] + nums[left] + nums[right] >= target) {
right--;
}
}
}
return count;
}
}
Why you used count+= right - left instead of count+= 1 ?
回复删除Didn't get the logic ?