Given an array of n integers nums and a target, find the number of index triplets
i, j, k
with 0 <= i < j < k < n
that satisfy the condition nums[i] + nums[j] + nums[k] < target
.
For example, given nums =
[-2, 0, 1, 3]
, and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1] [-2, 0, 3]
用3Sum的方法 a=num[i] + num[l] + num[r]
当a < target时候 left++, 但是注意此时对于num[i] + num[l] + num[l + 1 ---> r] 都满足<target
所以这个时候指针右移 count+ right - left;
public class Solution { public int threeSumSmaller(int[] nums, int target) { if (nums == null || nums.length == 0) { return 0; } Arrays.sort(nums); int count = 0; for (int i = 0; i < nums.length - 2; i++) { int left = i + 1; int right = nums.length - 1; while (left < right) { if (nums[i] + nums[left] + nums[right] < target) { count+= right - left; left++; } if (nums[i] + nums[left] + nums[right] >= target) { right--; } } } return count; } }
Why you used count+= right - left instead of count+= 1 ?
回复删除Didn't get the logic ?