Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is
11
(i.e., 2 + 3 + 5 + 1 = 11).
自底向上求解,
state:dp[i][j] 表示自底向上到第i行第j个数的最小路径
initial: dp[n][i] = triangle最后一个数组的值
function:dp[i][j] = Math.min(dp[i+1][j], dp[i+1][j+1]) + triangle.get(i).get(j) 最小值由当前点的值加上下一行相邻两个路径值最小的路径
return: dp[0][0]
time : O(n^2)
time : O(n^2)
//O(n^2)space
public class Solution { public int minimumTotal(List<List<Integer>> triangle) { if (triangle == null || triangle.size() == 0) { return 0; } int n = triangle.size(); int[][] dp = new int[n ][n ]; for (int i = 0; i < n; i++) { dp[n - 1][i] = triangle.get(n - 1).get(i); } for (int i = n - 2; i >= 0; i--) { for (int j = z; j >= 0; j--) { dp[i][j] = Math.min(dp[i+1][j], dp[i+1][j+1]) + triangle.get(i).get(j); } } return dp[0][0]; } } //O(n) space
public class Solution { public int minimumTotal(List<List<Integer>> triangle) { if (triangle == null || triangle.size() == 0) { return 0; } int n = triangle.size(); int[]dp = new int[n]; for (int i = 0; i < n; i++) { dp[i] = triangle.get(n - 1).get(i); } for (int i = n-2; i>= 0; i--) { for (int j =0; j <= i; j++) { dp[j] = Math.min(dp[j], dp[j + 1]) + triangle.get(i).get(j); } } return dp[0]; } }
没有评论:
发表评论