Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie,
"ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Here is an example:
S =
S =
"rabbbit"
, T = "rabbit"
Return
3
.
简单翻译一下,给定两个字符串S和T,求S有多少个不同的子串与T相同。S的子串定义为在S中任意去掉0个或者多个字符形成的串。
0 r a b b b i t
0 1 1 1 1 1 1 1 1
r 0 1 1 1 1 1 1 1
a 0 0 1 1 1 1 1 1
b 0 0 0 1 2 3 3 3
b 0 0 0 0 1 3 3 3
i 0 0 0 0 0 0 3 3
t 0 0 0 0 0 0 0 3
state: dp[i][j] 表示S串中从开始位置到第i位置与T串从开始位置到底j位置匹配的子序列的个数
function: dp[i][j] = dp[i][j-1] 就是说假设S已经匹配了j-1个字符,无论S[j]和T[i]是否匹配, 至少是dp[i][j-1]
如果匹配, 我们可以让S[j]和T[i]匹配,然后让S[j - 1]和T[i - 1]去匹配 (由图得关系)
dp[i][j] += dp[i-1][j-1]
initial: f[i][0] = 0 f[0][j] = 1 空集也是subsequences
return dp[m][n]
时间和空间都是O(m * n)
时间和空间都是O(m * n)
public class Solution { public int numDistinct(String s, String t) { int m = s.length(); int n = t.length(); int[][] dp = new int[n+1][m+1]; for (int i = 0; i<= n; i++) { dp[i][0] = 0; } for (int j = 0; j <= m; j++) { dp[0][j] = 1; } for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { dp[i][j] = dp[i][j-1]; if (t.charAt(i-1) == s.charAt(j-1)) { dp[i][j] += dp[i-1][j-1]; } } } return dp[n][m]; } }
没有评论:
发表评论