Given two strings, find the longest comment subsequence (LCS).
Your code should return the length of LCS.
Example
For "ABCD" and "EDCA", the LCS is "A" (or D or C), return 1
For "ABCD" and "EACB", the LCS is "AC", return 2
state: dp[i][j] 表示前i个字符配上前j个字符的LCS长度(必须包括以i j结尾的字符)
function: dp[i][j] 有两种情况:
1. charAt(i) = charAt(j) dp[i][j] = dp[i-1][j-1], dp[i][j-1], dp[i-1][j]中最大的一个
2. charAt(i) != charAt(j) dp[i][j] =dp[i][j-1], dp[i-1][j]中最大的一个 (只有最后一个不同, 可能i字符和j-1相同 或者j和i-1相同)
initial: 二维数组所以dp[i][0] = 0 dp[0][j] = 0
return: dp[m][n]
public class Solution { /** * @param A, B: Two strings. * @return: The length of longest common subsequence of A and B. */ public int longestCommonSubsequence(String A, String B) { if (A == null || B == null) { return 0; } int m = A.length(); int n = B.length(); int[][] dp = new int[m+1][n+1]; for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++) { if (A.charAt(i - 1) == B.charAt(j - 1)) { dp[i][j] = Math.max(dp[i-1][j-1] + 1, Math.max(dp[i][j-1], dp[i-1][j])); } else { dp[i][j] = Math.max(dp[i][j-1], dp[i-1][j]); } } } return dp[m][n]; } }
没有评论:
发表评论