Given n distinct positive integers, integer k (k <= n) and a number target.
Find k numbers where sum is target. Calculate how many solutions there are?
Example
Given [1,2,3,4], k=2, target=5. There are 2 solutions:
[1,4] and [2,3], return 2.
state:dp[i][j][t] 前i个数取出j个和为t 所以j必须要小于i
function: dp[i][j][t] = dp[i-1][j][t] 如果t >= A中第i个数 dp[i][j][t] += dp[i-1][j-1][t-A[i-1]]
(1)我们可以把当前A[i - 1]这个值包括进来,所以需要加上D[i - 1][j - 1][t - A[i - 1]](前提是t - A[i - 1]要大于0)
(2)我们可以不选择A[i - 1]这个值,这种情况就是D[i - 1][j][t],也就是说直接在前i-1个值里选择一些值加到target.
initial: dp[i][0][0] = 0
return: dp[i][k][target]
public class Solution { public int kSum(int A[], int k, int target) { int m = A.length; int[][][] dp = new int[A.length + 1][k+1][target+1]; for (int i = 0; i <= m; i++) { dp[i][0][0] = 1; } for (int i = 1; i <= m; i++) { for (int j = 1; j <= k && j <= i; j++) {// j必须要比i小 for (int n = 1; n <= target; n++) { dp[i][j][n] = dp[i-1][j][n]; if (n >= A[i-1]) {// 是大于等于不是大于 dp[i][j][n] += dp[i-1][j-1][n- A[i-1]]; } } } } return dp[m][k][target]; } }
没有评论:
发表评论