Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
- state: f[x][y]从起点走到x,y的最短路径
- function: f[x][y] = min(f[x-1][y], f[x][y-1]) + At[x][y]
- intialize: f[0][0] = cost[0][0]
- // f[i][0] = sum(0,0 -> i,0)
- // f[0][i] = sum(0,0 -> 0,i)
- answer: f[n-1][m-1]
- 时间O(m*n) 空间O(m*n)
public class Solution {
/**
* @param grid: a list of lists of integers.
* @return: An integer, minimizes the sum of all numbers along its path
*/
public int minPathSum(int[][] grid) {
if (grid.length == 0 || grid[0].length == 0 || grid == null) {
return 0;
}
int m = grid.length;
int n = grid[0].length;
int [][] sum = new int [m][n];
sum[0][0] = grid[0][0];
for (int i = 1; i < m; i++) {
sum[i][0] = sum[i-1][0] + grid[i][0];
}
for (int j = 1; j < n; j++) {
sum[0][j] = sum[0][j-1] + grid[0][j];
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
sum[i][j] = Math.min(sum[i-1][j], sum[i][j-1]) + grid[i][j];
}
}
return sum[m-1][n-1];
}
}
没有评论:
发表评论